Perception: how low can you go?

This short talk

=

Unscientific ramblings about how activity can change auditory perception

and by how much? and how far could it go? and how far should it go?

What I've found over the years

"Things that I believed not meaningful can sometimes be heard"

Examples:

- double-precision Over a full plugin.
 Obviously in IIR delays, but also in FFT, reverbs, sidechain signal...
 though 32-bit float can often sound better because noise
- sidechain things

 Because the sidechain is multiplied by input, it matters as much!
- The particular expf(x) approximation can have an effect on sound...
 not because it's imprecise, but because x varies

AirWindows experiments

The same song in 32-bit float, 64-bit double, and 80-bit long double

https://soundcloud.com/airwindows/float

rather obvious

https://soundcloud.com/airwindows/double

https://soundcloud.com/airwindows/long-double

Reservations: in long double I fear the differences might be dominated by transcendental approximations

What I've found over the years

"Making a plug-in changes your hearing for a while" (like: up to a few weeks after doing most critical listening work)

- **Reverb.** You will notice early reflections.
- **Distortion**. You will hear more distortion in things.
- **Aliasing.** You might hear exaggerated aliasing, if you can hear it at all.
- **Dynamics.** You will notice more the dynamic envelope of sounds. etc...

It makes sense!

My own mental model of hearing

Body hardware

- your real mostly unfixable damaged cochlea
- fixed-function

Can't change this

Neurons thing

- moldable layer of neurons
- easy to train and forget
- discriminate specific phenomenon

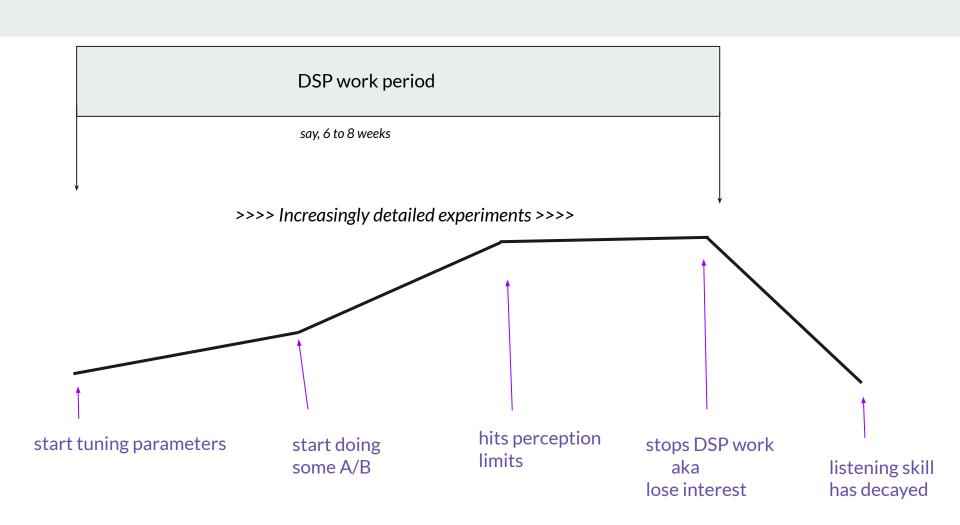
It changes by itself just by listening with attention

My own mental model of hearing

DSP work period

say, 6 to 8 weeks

Body hardware


- your real mostly unfixable damaged cochlea
- fixed-function

Can't change this

Neurons things

- moldable layer of neurons
- easy to train and forget
- discriminate specific phenomenon

It changes by itself just by listening with attention

What I've found over the years

"Making a plugin changes your hearing for a while" (like: up to a few weeks after doing most critical listening work)

- **Reverb.** You will notice early reflections.
- **Distortion**. You will hear more distortion in things.
- Aliasing. You might hear exaggerated aliasing, if you're young.
- **Dynamics.** You will notice more the dynamic envelope of sounds. etc...

It makes sense!

A few weeks only?

That "skill" evaporates once not needed.

Making **critical listening a relatively bad investment** in specialization.

Also, most useful audio changes are not the smallest

People will hear your -80dB RMS change better than your -90dB RMS change... because it's louder.

A few weeks only?

That "skill" evaporates once not needed.

Making **critical listening a relatively bad investment** in specialization.

Also, most useful audio changes are not the smallest

People will hear your -80dB RMS change better than your -90dB RMS change... because it's louder.

NEED TOOLS TO GET BACK CRITICAL LISTENING

wav-compare

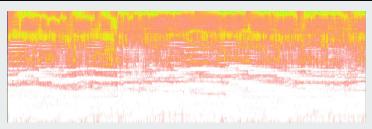
It is a sound file comparator tool in Dplug

An opinion from the comparison program:

"This is a big difference, should be something that changes the phase, or something very audible (possibly an error)!"

wav-compare

Root Mean Square energy of (a - b)



"This is a big difference, should be something that changes the phase, or something very audible (possibly an error)!"

RMS over the whole file can be locally misleading

wav-compare can output spectrograms with -o
 wav-compare can skip first seconds with -s (often first seconds of DAW diff have more energy)

Result =

Audio diff can be misleading (because phase)

- If you add 0.01ms to the release curve of your compressor, it won't meaningfully change its sound. However the measured RMS difference will be massive.
- If you set a single sample to zero, the sound will be massively disrupted.
 But not changing the RMS difference meaningfully over a long period.
- Inverting phase yields massive RMS diff.

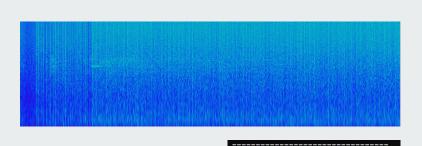
Spectrograms say if it's a big or small diff

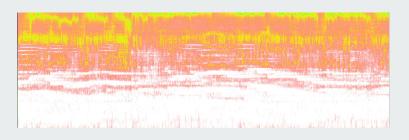
Small diff =

Comparing two different powf Very very subtle diff.

Big diff =

Probably a bug? Very audible thing RMS difference = -26.98 dB

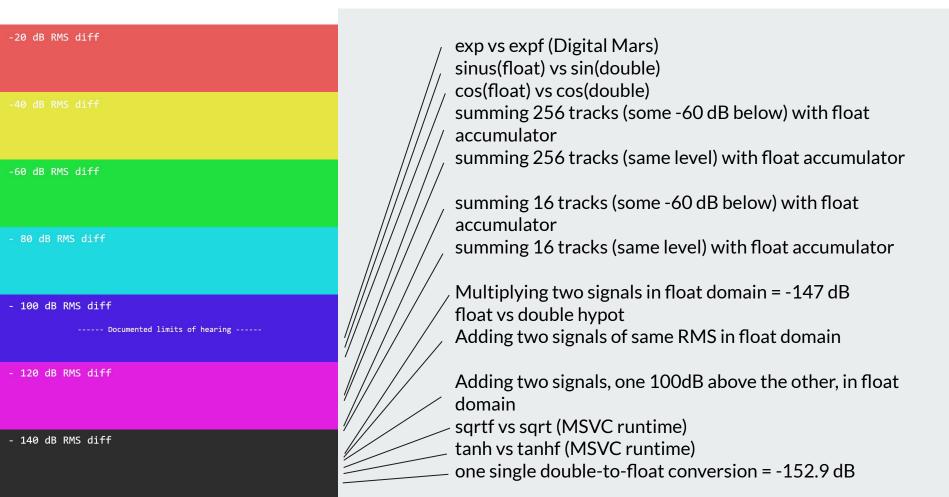

Spectrograms say if it's a big or small diff


Small diff =

```
The palette of the spectrogram is as follow:
                   0dB difference
- white
          means
- red
                -20dB difference
vellow
                 -40dB difference
         means
                 -60dB difference
- green
                 -80dB difference
- cyan
         means -100dB difference
         means -140dB difference or below
- black
```

Big diff =

Also this spectrogram is full double-precision.


Probably a bug? Very audible thing

Comparing two different powf

Very very subtle diff.

RMS difference = -113.43 dB

Typical RMS(difference) of small operations


```
More
important
things
going on
above!
```

- 100 dB RMS diff

0 dB RMS diff

----- Documented limits of hearing -----

- 120 dB RMS diff

- 140 dB RMS diff

Typical RMS(difference) of small operations

but I've just not measured those bigger things yet.

Example:

- smoothing the smoothing coefficients
- table approximations
- all sort of algorithm details

abtest tool

 An A/B comparison tool in Dplug.

Instant switch from A to B to avoid short iconic memory

 Diffuse and/or concentrated attention questions
 Diffuse attention often better to spot "naturalness"

Not everything deserves to be A/B. A/B is often with a fixed source, unlike interactive tuning.

Questions can be <u>distracting</u>

```
Which sound is the CLEANEST?
   * Type 'a' to listen to A
   * Type 'b' to listen to B
   * Type ' ' to choose current (B) and move to next question
   * Type '=' to declare a draw and move to next question
   * Type 's' to skip this question
   Choice?
*** TOTAL RESULTS
 => baseline2.wav got 2.5 votes
 => fmath2.wav got 3.5 votes
*** DETAILS
             What would you rather hear in YOUR MUSIC? => fmath2.wav
                          Which sound feels more TRUE? => baseline2.way
               What would you rather hear in your CAR? => fmath2.wav
                        Which sound has the best LOWS? => draw
                       Which sound has the best HIGHS? => fmath2.wav
                          Which sound is the CLEANEST? => baseline2.way
```

abtest WARNING

Placebo is absolutely MASSIVE and often LOUDER than your diff

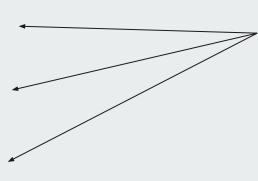
Once you know which is A and B, you will have a favourite.

Where to position audio placebo?

-20 dB RMS diff

RMS diff

-60 dB RMS diff


- 80 dB RMS diff

- 100 dB RMS diff

----- Documented limits of hearing -----

- 120 dB RMS diff

- 140 dB RMS diff

Certainly above -110 dB RMS, should probably measure where it is... and for whom

Questions?